Block boundary value methods for solving Volterra integral and integro-differential equations
نویسندگان
چکیده
منابع مشابه
Linear Multistep Methods for Volterra Integral and Integro-Differential Equations
In these appendices we present, successively, I conditions for the existence of a unique solution of (1.1) and (1.2); II three tables of coefficients of forward differentiation formulas, and of two common LM formulas for ODEs, viz., backward differentiation formulas and Adams-Moulton formulas; III two lemmas which are needed in: IV proofs of the main results of this paper, as far as they are no...
متن کاملDirect method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions
In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...
متن کاملDirect method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions
In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...
متن کاملSolving Volterra integro-differential equations by variable stepsize block BS methods: Properties and implementation techniques
In this article, block BS methods are considered for the numerical solution of Volterra integro-differential equations (VIDEs). Convergence and stability properties are analyzed. A new Matlab code for the solution of VIDEs, called VIDEBS, is presented. Numerical results using a variable stepsize implementation show the effectiveness of the proposed code. 2014 Elsevier Inc. All rights reserved.
متن کاملApplication of the block backward differential formula for numerical solution of Volterra integro-differential equations
In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2012
ISSN: 0377-0427
DOI: 10.1016/j.cam.2012.01.018